High-resolution diffusion-weighted imaging with interleaved variable-density spiral acquisitions.
نویسندگان
چکیده
PURPOSE To develop a multishot magnetic resonance imaging (MRI) pulse sequence and reconstruction algorithm for diffusion-weighted imaging (DWI) in the brain with submillimeter in-plane resolution. MATERIALS AND METHODS A self-navigated multishot acquisition technique based on variable-density spiral k-space trajectory design was implemented on clinical MRI scanners. The image reconstruction algorithm takes advantage of the oversampling of the center k-space and uses the densely sampled central portion of the k-space data for both imaging reconstruction and motion correction. The developed DWI technique was tested in an agar gel phantom and three healthy volunteers. RESULTS Motions result in phase and k-space shifts in the DWI data acquired using multishot spiral acquisitions. With the two-dimensional self-navigator correction, diffusion-weighted images with a resolution of 0.9 x 0.9 x 3 mm3 were successfully obtained using different interleaves ranging from 8-32. The measured apparent diffusion coefficient (ADC) in the homogenous gel phantom was (1.66 +/- 0.09) x 10(-3) mm2/second, which was the same as measured with single-shot methods. The intersubject average ADC from the brain parenchyma of normal adults was (0.91 +/- 0.01) x 10(-3) mm2/second, which was in a good agreement with the reported literature values. CONCLUSION The self-navigated multishot variable-density spiral acquisition provides a time-efficient approach to acquire high-resolution diffusion-weighted images on a clinical scanner. The reconstruction algorithm based on motion correction in the k-space data is robust, and measured ADC values are accurate and reproducible.
منابع مشابه
Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging.
A fat-saturated twice-refocused spin echo sequence was implemented on a GE Signa 1.5-T whole-body system for diffusion-weighted imaging. Data were acquired using an analytically designed interleaved variable-density (VD) spiral readout trajectory. This flexible design algorithm allowed real-time prescription on the scanner. Each interleaf of the VD spiral oversampled the center of k-space. The ...
متن کاملHigh-resolution in vivo diffusion tensor imaging of the injured cat spinal cord using self-navigated, interleaved, variable-density spiral acquisition (SNAILS-DTI).
Diffusion tensor magnetic resonance imaging (DTI) is useful for studying the microstructural changes in the spinal cord following traumatic injury; however, image quality is generally poor due to the small size of the spinal cord, physiological motion and susceptibility artifacts. Self-navigated, interleaved, variable-density spiral diffusion tensor imaging (SNAILS-DTI) is a distinctive pulse s...
متن کاملVariable density spiral fMRI
Introduction: In the original variable-density (VD) spiral trajectory[1], the sampling density varies throughout the k-space trajectory; i.e., k(τ) = λτe , where the parameter α controls the rate of density variation. Here, we propose a k-space trajectory consisting of an Archimedean spiral[2] from the origin out to a given radius k1, and extending beyond k1 with a variable-density spiral of α>...
متن کاملAnisotropy in high angular resolution diffusion-weighted MRI.
The diffusion in voxels with multidirectional fibers can be quite complicated and not necessarily well characterized by the standard diffusion tensor model. High angular resolution diffusion-weighted acquisitions have recently been proposed as a method to investigate such voxels, but the reconstruction methods proposed require sophisticated estimation schemes. We present here a simple algorithm...
متن کاملCompressed Sensing Reconstruction Improves Variable Density Spiral Functional MRI
Introduction: Recent approaches to spiral imaging using variable density (VD) trajectories [1,2] have demonstrated the ability to decrease the data acquisition window for an equivalent image matrix size, with a subsequently improved fMRI sensitivity attributed to a higher time course sampling rate. In separate research, the application of Compressed Sensing (CS) reconstruction algorithms to spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2005